Nuprl Lemma : decidable__is-tail 11,40

es:ES, Config:AbsInterface(chain_config()), e:E.
Dec(c<e.((c  Config)) & (cctail?(Config(c)))) 
latex


Definitionss = t, t  T, x:AB(x), x:AB(x), ES, EState(T), a:A fp B(a), f(a), Id, , strong-subtype(A;B), P  Q, Type, EqDecider(T), Unit, left + right, IdLnk, x:A  B(x), EOrderAxioms(Epred?info), kindcase(ka.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r  s, e < e', , b, constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,yt(x;y), Void, x:A.B(x), Top, S  T, suptype(ST), first(e), A, <ab>, pred(e), x.A(x), xt(x), P & Q, chain_config(), E, AbsInterface(A), let x,y = A in B(x;y), t.1, loc(e), e  X, {x:AB(x)} , E(X), case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , X(e), cctail?(x), Dec(P), x:AB(x), b | a, a ~ b, a  b, a <p b, a < b, A c B, x f y, xLP(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, (x  l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), ee'.P(e), e<e'P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), x  dom(f), P  Q, ff, inr x , "$token", inl x , tt, Atom, False, True, a = b, P  Q, P  Q, locl(a), e@iP(e), x(s)
Lemmasexistse-before wf, decidable existse-before, iff wf, rev implies wf, assert-eq-id, decidable cand, true wf, false wf, btrue wf, bfalse wf, decidable wf, decidable assert, cctail? wf, es-interface-val wf, es-interface wf, es-interface-val wf2, es-E-interface wf, es-is-interface wf, es-loc wf, es-E wf, chain config wf, deq wf, EOrderAxioms wf, kind wf, Msg wf, nat wf, val-axiom wf, cless wf, qle wf, bool wf, Knd wf, kindcase wf, IdLnk wf, constant function wf, loc wf, not wf, assert wf, first wf, top wf, unit wf, pred! wf, strongwellfounded wf, member wf, rationals wf, Id wf, EState wf, subtype rel wf, event system wf

origin